direct product, p-group, metabelian, nilpotent (class 2), monomial
Aliases: C2×C22.11C24, C42⋊8C23, C22.11C25, C25.67C22, C24.472C23, C23.105C24, C22.972+ 1+4, C4⋊C4⋊24C23, C24⋊14(C2×C4), D4⋊8(C22×C4), C2.7(C24×C4), (C4×D4)⋊85C22, (C22×D4)⋊30C4, C4.37(C23×C4), (C22×C4)⋊9C23, C23⋊5(C22×C4), C22⋊C4⋊22C23, (C2×C4).157C24, (C2×C42)⋊39C22, (C23×C4)⋊15C22, (D4×C23).18C2, C22.2(C23×C4), (C2×D4).496C23, C42⋊C2⋊80C22, C2.1(C2×2+ 1+4), (C22×D4).578C22, (C2×C4×D4)⋊66C2, D4○(C2×C22⋊C4), C22⋊C4○2(C2×D4), (C2×D4)⋊52(C2×C4), (C2×C4)⋊6(C22×C4), C22⋊C4○(C22×D4), (C22×C4)⋊40(C2×C4), (C2×C4⋊C4)⋊145C22, (C2×C42⋊C2)⋊48C2, (C22×C22⋊C4)⋊14C2, (C2×C22⋊C4)⋊77C22, C4⋊C4○4(C2×C4⋊C4), (C2×D4)○2(C2×C22⋊C4), C22⋊C4○4(C2×C22⋊C4), (C2×C4⋊C4)○(C2×C4⋊C4), (C2×C22⋊C4)○(C2×C22⋊C4), SmallGroup(128,2157)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×C22.11C24
G = < a,b,c,d,e,f,g | a2=b2=c2=e2=f2=g2=1, d2=c, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, bc=cb, ede=gdg=bd=db, fef=be=eb, bf=fb, bg=gb, cd=dc, ce=ec, cf=fc, cg=gc, df=fd, eg=ge, fg=gf >
Subgroups: 1500 in 960 conjugacy classes, 692 normal (8 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C2×C4, C2×C4, D4, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C24, C24, C24, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C42⋊C2, C4×D4, C23×C4, C23×C4, C22×D4, C25, C22×C22⋊C4, C2×C42⋊C2, C2×C4×D4, C22.11C24, D4×C23, C2×C22.11C24
Quotients: C1, C2, C4, C22, C2×C4, C23, C22×C4, C24, C23×C4, 2+ 1+4, C25, C22.11C24, C24×C4, C2×2+ 1+4, C2×C22.11C24
(1 25)(2 26)(3 27)(4 28)(5 29)(6 30)(7 31)(8 32)(9 15)(10 16)(11 13)(12 14)(17 21)(18 22)(19 23)(20 24)
(1 11)(2 12)(3 9)(4 10)(5 21)(6 22)(7 23)(8 24)(13 25)(14 26)(15 27)(16 28)(17 29)(18 30)(19 31)(20 32)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 19)(2 32)(3 17)(4 30)(5 15)(6 28)(7 13)(8 26)(9 29)(10 18)(11 31)(12 20)(14 24)(16 22)(21 27)(23 25)
(5 21)(6 22)(7 23)(8 24)(17 29)(18 30)(19 31)(20 32)
(1 3)(2 10)(4 12)(5 7)(6 24)(8 22)(9 11)(13 15)(14 28)(16 26)(17 19)(18 32)(20 30)(21 23)(25 27)(29 31)
G:=sub<Sym(32)| (1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)(8,32)(9,15)(10,16)(11,13)(12,14)(17,21)(18,22)(19,23)(20,24), (1,11)(2,12)(3,9)(4,10)(5,21)(6,22)(7,23)(8,24)(13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,31)(20,32), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,19)(2,32)(3,17)(4,30)(5,15)(6,28)(7,13)(8,26)(9,29)(10,18)(11,31)(12,20)(14,24)(16,22)(21,27)(23,25), (5,21)(6,22)(7,23)(8,24)(17,29)(18,30)(19,31)(20,32), (1,3)(2,10)(4,12)(5,7)(6,24)(8,22)(9,11)(13,15)(14,28)(16,26)(17,19)(18,32)(20,30)(21,23)(25,27)(29,31)>;
G:=Group( (1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)(8,32)(9,15)(10,16)(11,13)(12,14)(17,21)(18,22)(19,23)(20,24), (1,11)(2,12)(3,9)(4,10)(5,21)(6,22)(7,23)(8,24)(13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,31)(20,32), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,19)(2,32)(3,17)(4,30)(5,15)(6,28)(7,13)(8,26)(9,29)(10,18)(11,31)(12,20)(14,24)(16,22)(21,27)(23,25), (5,21)(6,22)(7,23)(8,24)(17,29)(18,30)(19,31)(20,32), (1,3)(2,10)(4,12)(5,7)(6,24)(8,22)(9,11)(13,15)(14,28)(16,26)(17,19)(18,32)(20,30)(21,23)(25,27)(29,31) );
G=PermutationGroup([[(1,25),(2,26),(3,27),(4,28),(5,29),(6,30),(7,31),(8,32),(9,15),(10,16),(11,13),(12,14),(17,21),(18,22),(19,23),(20,24)], [(1,11),(2,12),(3,9),(4,10),(5,21),(6,22),(7,23),(8,24),(13,25),(14,26),(15,27),(16,28),(17,29),(18,30),(19,31),(20,32)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,19),(2,32),(3,17),(4,30),(5,15),(6,28),(7,13),(8,26),(9,29),(10,18),(11,31),(12,20),(14,24),(16,22),(21,27),(23,25)], [(5,21),(6,22),(7,23),(8,24),(17,29),(18,30),(19,31),(20,32)], [(1,3),(2,10),(4,12),(5,7),(6,24),(8,22),(9,11),(13,15),(14,28),(16,26),(17,19),(18,32),(20,30),(21,23),(25,27),(29,31)]])
68 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2AA | 4A | ··· | 4AN |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 2 | ··· | 2 |
68 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 |
type | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | 2+ 1+4 |
kernel | C2×C22.11C24 | C22×C22⋊C4 | C2×C42⋊C2 | C2×C4×D4 | C22.11C24 | D4×C23 | C22×D4 | C22 |
# reps | 1 | 4 | 2 | 8 | 16 | 1 | 32 | 4 |
Matrix representation of C2×C22.11C24 ►in GL6(𝔽5)
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
3 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 4 | 1 | 3 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 4 | 1 | 4 | 2 |
0 | 0 | 4 | 1 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 1 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 1 | 4 | 0 | 4 |
G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[3,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0,0,0,4,0,0,0,0,1,1,0,0,0,0,0,3,0,1],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,1,4,4,0,0,1,0,1,1,0,0,0,0,4,0,0,0,0,0,2,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,4,0,0,0,0,0,0,1,1,0,0,0,0,0,4],[1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,1,0,0,0,1,0,4,0,0,0,0,4,0,0,0,0,0,0,4] >;
C2×C22.11C24 in GAP, Magma, Sage, TeX
C_2\times C_2^2._{11}C_2^4
% in TeX
G:=Group("C2xC2^2.11C2^4");
// GroupNames label
G:=SmallGroup(128,2157);
// by ID
G=gap.SmallGroup(128,2157);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,2,448,477,387,1123]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=e^2=f^2=g^2=1,d^2=c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,e*d*e=g*d*g=b*d=d*b,f*e*f=b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,d*f=f*d,e*g=g*e,f*g=g*f>;
// generators/relations